Clinical UM Guideline

 

Subject: Treatment of Keloids and Scar Revision
Guideline #:  CG-SURG-31 Publish Date:    12/27/2017
Status: Revised Last Review Date:    11/02/2017

Description

 This document describes the medically necessary and reconstructive indications for the treatment of keloids and scar revision.

Note: Please see the following related documents for additional information:

Medically Necessary: In this document, procedures are considered medically necessary if there is a significant physical functional impairment AND the procedure can be reasonably expected to improve the physical functional impairment. 

Reconstructive: In this document, procedures are considered reconstructive when intended to address a significant variation from normal related to accidental injury, disease, trauma, treatment of a disease or a congenital defect.

Note: Not all benefit contracts/certificates include benefits for reconstructive services as defined by this document. Benefit language supersedes this document.

Cosmetic: In this document, procedures are considered cosmetic when intended to change a physical appearance that would be considered within normal human anatomic variation. Cosmetic services are often described as those that are primarily intended to preserve or improve appearance. 

Clinical Indications

I.  Treatment of Keloids

Medically Necessary:

Treatment of a keloid is considered medically necessary when there is documented evidence of significant physical functional impairment related to the keloid and the treatment can be reasonably expected to improve the physical functional impairment.

Treatment of a keloid with radiation therapy (up to 3 fractions) is considered medically necessary as adjunct therapy following surgical excision (initiated within 3 days) when the medically necessary criteria for keloid removal are met.

Reconstructive:

Treatment of a keloid is reconstructive when the keloid results in a significant variation from normal related to accidental injury, disease, trauma, or treatment of a disease.

Treatment of a keloid with radiation therapy (up to 3 fractions) is considered medically necessary as adjunct therapy following surgical excision (initiated within 3 days) when the reconstructive criteria for keloid removal are met.

Cosmetic and Not Medically Necessary:

Treatment of keloids is considered cosmetic and not medically necessary when performed in the absence of a significant physical functional impairment, is not reconstructive, and is intended to change a physical appearance that would be considered within normal human anatomic variation.

II.  Scar Revision

Medically Necessary:

Scar revision is considered medically necessary when there is documented evidence of significant physical functional impairment related to the scar and the treatment can be reasonably expected to improve the physical functional impairment.

Reconstructive:

Scar revision is considered reconstructive when there is significant variation from normal related to accidental injury, disease, trauma, or treatment of a disease or congenital defect.

Cosmetic and Not Medically Necessary:

Scar revision is considered cosmetic and not medically necessary when performed in the absence of a significant physical functional impairment, is not reconstructive, and is intended to change a physical appearance that would be considered within normal human anatomic variation.

Coding

The following codes for treatments and procedures applicable to this guideline are included below for informational purposes. Inclusion or exclusion of a procedure, diagnosis or device code(s) does not constitute or imply member coverage or provider reimbursement policy. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

CPT

 

11400-11446

Excision benign lesions [includes codes 11400, 11401, 11402, 11403, 11404, 11406, 11420, 11421, 11422, 11423, 11424, 11426, 11440, 11441, 11442, 11443, 11444, 11446]

12031-13153

Repair, intermediate complex [includes codes 12031, 12032, 12034, 12035, 12036, 12037, 12041, 12042, 12044, 12045, 12046, 12047, 12051, 12052, 12053, 12054, 12055, 12056, 12057, 13100, 13101, 13102, 13120, 13121, 13122, 13131, 13132, 13133, 13151, 13152, 13153]

14000-14302

Adjacent tissue transfer or rearrangement [includes codes 14000, 14001, 14020, 14021, 14040, 14041, 14060, 14061, 14301, 14302]

 

 

ICD-10 Procedure

 

0HN0XZZ-0HNNXZZ

Release, skin, external approach [by body area; includes codes 0HN0XZZ, 0HN1XZZ, 0HN2XZZ, 0HN3XZZ, 0HN4XZZ, 0HN5XZZ, 0HN6XZZ, 0HN7XZZ, 0HN8XZZ, 0HN9XZZ, 0HNAXZZ, 0HNBXZZ, 0HNCXZZ, 0HNDXZZ, 0HNEXZZ, 0HNFXZZ, 0HNGXZZ, 0HNHXZZ, 0HNJXZZ, 0HNKXZZ, 0HNLXZZ, 0HNMXZZ, 0HNNXZZ]

 

 

ICD-10 Diagnosis

 

L73.0

Acne keloid

L90.5

Scar conditions and fibrosis of skin

L91.0

Hypertrophic scar (keloid)

Also the following for adjunct keloid treatment:

CPT

 

77261

Therapeutic radiology treatment planning; simple

77290

Therapeutic radiology treatment planning; intermediate

77300

Basic radiation dosimetry calculation, central axis depth dose calculation, TDF, NSD, gap calculation, off axis factor, tissue inhomogeneity factors, calculation of non-ionizing radiation surface and depth dose, as required during course of treatment, only when prescribed by the treating physician

77332

Treatment devices, design and construction; simple (simple block, simple bolus)

77334

Treatment devices, design and construction; complex (irregular blocks, special shields, compensators, wedges, molds or casts)

77401

Radiation treatment delivery, superficial and/or ortho voltage, per day

77402

Radiation treatment delivery; > 1 MeV; simple

77407

Radiation treatment delivery; > 1 MeV; intermediate

77412

Radiation treatment delivery; > 1 MeV; complex

77431

Radiation therapy management with complete course of therapy consisting of 1 or 2 fractions only

 

 

ICD-10 Diagnosis

 

L73.0

Acne keloid

L91.0

Hypertrophic scar (keloid)

Discussion/General Information

Description of the Condition

Keloids

Keloids are an overgrowth of scar tissue in response to skin injury causing a raised, hardened section of skin. Similar to hypertrophic scars, keloids are bulkier and extend beyond the borders of the original site of injury. Keloids occur as a result of acne, burns, chicken pox, skin injuries such as surgical incisions, traumatic wounds, vaccination sites, ear piercings, or even minor scratches. Keloids can occur on any part of the body, but typically occur on the ear lobes, shoulders, chest, and back. Some keloids cause symptoms of pain and pruritus, redness, unusual sensations at the site, and may result in hyperpigmentation and disfigurement (Lee, 2015). Keloids occur in both genders, although a predominance has been reported in females, and can occur in all skin types. In some individuals, keloids can cause a high degree of symptoms which affects their ability to perform normal activities (for example, interferes with sleep). Suboptimal tissue healing can result in impaired function. The recurrence rate of keloids after excision alone has been reported at 45% to 100%. Additionally, the peer-reviewed medical literature notes that keloids may become larger in size after treatment.

Scars

Scar formation may result from healed wounds, lesions from diseases, surgical operations, or trauma. The amount of scarring may be determined by the size, depth, and location of the wound, the age of the person, heredity, and skin characteristics including color (pigmentation). Scar tissue may be associated with symptoms of discomfort, become hypertrophic, or breakdown. A contracture is a severe form of a scar and is commonly associated with thermal injuries. Surgical scar revision is a procedure intended to remove scar tissue by cutting it out (excising) and closing the area in a new configuration that restores function and corrects skin changes or disfigurement. The revisions may involve redirecting the tension lines with techniques such as W-plasty or Z-plasty. Some scar revision may involve more complex reconstruction using skin flaps and grafts.

Concepts of Medical Necessity, Reconstructive, and Cosmetic

The coverage eligibility of medical and surgical therapies to treat skin conditions is often based on a determination of whether treatment is considered medically necessary, reconstructive, or cosmetic in nature.

Treatments that may be effective and performed as monotherapy or in combination with other therapeutic regimens for keloids or hypertrophic scar tissue that cause significant pain or result in a significant physical functional impairment include, but are not limited to, intralesional corticosteroid injections (with or without 5-fluorouracil) (Asilian, 2006; Manuskiatti, 2002; Nanda, 2004), laser therapy and laser resurfacing with CO2, pulsed-dye or YAG lasers (Alster, 2003; Alster, 2007; Asilian, 2006; Azzam, 2016; Bouzari, 2007; de las Alas, 2012; El-Zawahry, 2015; Hultman, 2013; Kwon, 2000; Mamalis, 2014; Manuskiatti, 2002; Tanzi, 2002), and surgical excision (with or without skin flap/grafting) (Atiyeh, 2007; Bermueller, 2010; Mofikoya, 2007).

Leventhal and colleagues (2006) attempted to identify treatment regimens for keloids and hypertrophic scars with a “better-than-even likelihood of improvement.” This meta-analysis of 70 treatment series for the various clinical measures showed a 70% chance of improvement with treatment; however, the mean amount of improvement to be expected was around 60%. There was no statistically significant difference between treatments.

In a review article, Wolfgram and colleagues (2009) state there are diverse strategies for management of hypertrophic scars and keloids. Successful healing of these lesions can be achieved only with combined multidisciplinary therapeutic regimens; however, optimal treatment of these lesions remains undefined. Jin and colleagues (2013) performed a meta-analysis of 28 well-designed clinical trials with 919 subjects evaluating the efficacy and safety of laser therapy in hypertrophic scar management. The overall response rate for laser therapy was 71% for scar prevention, 68% for hypertrophic scar treatment, and 72% for keloid treatment. The 585/595-nm pulsed-dye laser and 532-nm laser subgroups yielded the best responses among all laser systems; however, the authors stated the level of evidence for laser therapy as a keloid treatment is low.

Low- or high-dose radiation therapy (superficial [external beam] or interstitial [brachytherapy]) following excisional surgery has been reported to have higher response rates and lower recurrence rates for treatment-resistant keloids. Low-dose rate (LDR) and high-dose rate (HDR) brachytherapy for the treatment of keloids involves the placement of radioactive seeds or strands placed into a plastic tube that is sutured into the wound site after the keloid is surgically removed. In HDR, the total dosage is divided into lower-dosed sessions and administered over hours (that is, left in for seconds to minutes at a time) instead of over days. LDR implants are left in for 2 to 3 days and then removed. The tubes are removed after therapy and the wound is closed. External beam radiation therapy (EBRT) for treatment of keloids is administered after surgical excision by low-voltage photon X-ray or high-energy (voltage) electrons delivered by linear accelerator in divided doses, once or twice daily for up to a total treatment dose.

Gupta and Sharma (2011) reported on standard guidelines of care for keloids in a review article evaluating the evidence in the peer-reviewed medical literature for the type of radiation used, timing of treatment, and dosage of radiation used in the treatment of keloids, stating:

Lee and Park (2015) retrospectively evaluated a case series of 37 keloids to determine the appropriate time for initiating external beam (electron) radiation therapy following surgical excision. Radiation therapy was initiated within 24 hours in 24 lesions, between 24 and 72 hours in 6 lesions, and after more than 72 hours in 7 lesions. The median follow-up period was 27.4 months. Seven lesions recurred, including five lesions reoccurring in high stretch-tension regions (p=0.010); initial treatments in these lesions were administered within 24 hours in one lesion and more than 72 hours after surgical excision in six lesions (p<0.0001). The investigators concluded that radiotherapy should be initiated to the keloid site within 72 hours of surgical excision.

As early as 1994, Klumpar and colleagues reported that radiation therapy following postsurgical excision of keloids resulted in high control rates of 72% to 92%. In a large, single-institution case-control retrospective study, Hoang and colleagues (2017) reported on the 10-year effects of surgical excision and adjuvant brachytherapy versus external beam radiation for the treatment of keloids, stating:

…surgically excised keloids reportedly recur at a rate of > 45%. Post-excision radiation (RT) has been delivered via external beam radiotherapy (EBRT) or interstitial high dose rate (HDR) brachytherapy. Despite historical data showing 10% to 20% keloid recurrences with post-excision RT, there is a paucity of high-quality evidence comparing keloid recurrences between the two RT modalities.

A total of 128 individuals with 264 keloid lesions were treated by excision alone (n=28), post-excision EBRT (n=197), or post-excision HDR brachytherapy (n=39). Participant and keloid recurrence data were analyzed using mixed effect Cox regression modeling (statistical threshold, p<0.05). A total of 54% of keloids recurred after surgical excision alone (9-month median follow up); 19% of keloids recurred with post-excision EBRT (42-month median follow up); 23% of keloids recurred with post-excision brachytherapy (12-month median follow up). Adjuvant EBRT and brachytherapy each showed significant control of keloid recurrence compared to excision alone (p<0.01). EBRT significantly delayed the time of keloid recurrence over brachytherapy by a mean difference of 2.5 years (p<0.01).

In a review article, Kal and Veen (2005) state that a relatively high-dose radiation must be applied in a short overall treatment time for successful prevention of recurrence of keloids after surgical excision. The optimal treatment may be a radiation strategy resulting in a BED value of at least 30 Gy. A BED value of 30 Gy can be obtained with, for instance, 1 single acute dose of 13 Gy, 2 fractions of 8 Gy, or 3 fractions of 6 Gy, or 1 single dose of 27 Gy at low-dose rate. The authors recommend that radiation treatment should be administered within 2 days following surgery. In follow-up, Kal and colleagues (2009) performed a retrospective review of the literature, concluding that most doses of radiation therapy used for prevention of keloid recurrence after surgery are too low. They suggest a treatment strategy of BED value of at least 30 to 40 Gy should be applied using an alpha/beta ration of 10 to prevent recurrences of keloids.

Additional comparative studies (Emad, 2010; Sclafani, 1996), a prospective study (van Leeuven, 2014); retrospective case studies (Carvajal, 2016; De Cicco, 2014; Guix, 2001; Kim, 2015; Kuribayashi, 2011; Ogawa, 2003; Ogawa, 2007; Shen, 2015), a systematic review and meta-analysis (Shin, 2016), and other systematic reviews (Flickinger, 2011; van Leeuven, 2015) suggest that keloids are effectively treated with a combination of surgical excision and radiation therapy (including EBRT or brachytherapy) in the immediate postoperative period.

Adverse reactions of radiation therapy at the surgically removed keloid site may include skin redness, skin peeling, telangiectasia and permanent skin color changes (generally hypopigmentation) (Gupta and Sharma, 2011). In a systematic review and examination of evidence-based opinions of radiation oncologists regarding the acceptability of using radiation to treat keloids, Ogawa and colleagues (2009) concluded the “risk of carcinogenesis attributable to keloid radiation therapy is very low when surrounding tissues, including the thyroid and mammary glands, especially in children and infants, are adequately protected, and that radiation therapy is acceptable as a keloid treatment modality.” In a retrospective analysis of control and toxicity rates in 116 individuals with keloids who underwent postoperative brachytherapy and electron beam radiation, Duan and colleagues (2015) reported no definitive evidence was found for an association between radiotherapy and the occurrence of cancer during the follow-up period (median observation period: 46.5 months (range, 10.0-120.0 months) for all participants).

Definitions

Brachytherapy: A type of radiation treatment given by placing radioactive material directly into the target area; also known as internal or interstitial radiation therapy.  

External beam radiation therapy (EBRT): A type of low-dose radiation treatment used in combination (adjunctive) with surgical excision for the treatment of keloids. EBRT uses highly focused beams of light called superficial X-rays to destroy collagen-producing cells and limit the growth of new cells.

Hypertrophic scar: An elevated scar that is typically raised, erythematous (red, pink, or purple) and stiffer than the surrounding skin. Hypertrophic scars are more commonly found in areas of high skin tension, or on people with darker skin tones.

Keloid: A condition where a scar becomes raised above the flat surface of normal skin, has a hardened texture, and may grow beyond the boundaries of the scar.

Scar: A mark left in the skin by the healing of a wound, sore, or injury because of the replacement by connective tissue of the injured issues.

Significant physical functional impairment: Limits on normal physical functioning that may include, but are not limited to, problems with communication, respiration, eating, swallowing, visual impairments, skin integrity, distortion of nearby body parts, or obstruction of an orifice. The cause of the physical functional impairment may be pain, structural integrity, congenital anomalies or other factors. Significant physical functional impairment excludes social, emotional, and psychological impairments or potential impairments.

References

Peer Reviewed Publications:

  1. Alster T. Laser scar revision: comparison study of 585-nm pulsed dye laser with and without intralesional corticosteroids. Dermatol Surg. 2003; 29(1):25-29.
  2. Alster T, Zaulyanov L. Laser scar revision: a review. Dermatol Surg. 2007; 33(2):131-140.
  3. Asilian A, Darougheh A, Shariati F. New combination of triamcinolone, 5-fluorouracil, and pulsed-dye laser for treatment of keloid and hypertrophic scars. Dermatol Surg. 2006; 32(7):907-915.
  4. Atiyeh BS. Nonsurgical management of hypertrophic scars: evidence-based therapies, standard practices, and emerging methods. Aesthetic Plast Surg. 2007; 31(5):468-492; discussion 493-494.
  5. Azzam OA, Bassiouny DA, El-Hawary MS, et al. Treatment of hypertrophic scars and keloids by fractional carbon dioxide laser: a clinical, histological, and immunohistochemical study. Lasers Med Sci. 2016; 31(1):9-18.
  6. Bermueller C, Rettinger G, Keck T. Auricular keloids: treatment and results. Eur Arch Otorhinolaryngol. 2010; 267(4):575-580.
  7. Bouzari N, Davis SC, Nouri K. Laser treatment of keloids and hypertrophic scars. Int J Dermatol. 2007; 46(1):80-98.
  8. Carvajal CC, Ibarra CM, Arbulo DL, et al. Postoperative radiotherapy in the management of keloids. Ecancermedicalscience. 2016; 10:690.
  9. De Cicco L, Vischioni B, Vavassori A, et al. Postoperative management of keloids: low-dose-rate and high-dose-rate brachytherapy. Brachytherapy. 2014; 13(5):508-513.
  10. de las Alas JM, Siripunvarapon AH, Dofitas BL. Pulsed dye laser for the treatment of keloid and hypertrophic scars: a systematic review. Expert Rev Med Devices. 2012; 9(6):641-650.
  11. Duan Q, Liu J, Luo Z, Hu C. Postoperative brachytherapy and electron beam irradiation for keloids: a single institution retrospective analysis. Mol Clin Oncol. 2015; 3(3):550-554.
  12. El-Zawahry BM, Sobhi RM, Bassiouny DA, Tabak SA. Ablative CO2 fractional resurfacing in treatment of thermal burn scars: an open-label controlled clinical and histopathological study. J Cosmet Dermatol. 2015; 14(4):324-331.
  13. Emad M, Omidvari S, Dastgheib L, et al. Surgical excision and immediate postoperative radiotherapy versus cryotherapy and intralesional steroids in the management of keloids: a prospective clinical trial. Med Princ Pract. 2010; 19(5):402-405.
  14. Flickinger JC. A radiobiological analysis of multicenter data for postoperative keloid radiotherapy. Int J Radiat Oncol Biol Phys. 2011; 79(4):1164-1170.
  15. Guix B, Henríquez I, Andres A, et al. Treatment of keloids by high-dose-rate brachytherapy: a seven-year study. Int J Radiat Oncol Biol Phys. 2001; 50(1):167-172.
  16. Gupta S, Sharma VK. Standard guidelines of care: keloids and hypertrophic scars. Indian J Dermatol Venereol Leprol. 2011; 77(1):94-100.
  17. Hoang D, Reznik R, Orgel M, et al. Surgical excision and adjuvant brachytherapy vs external beam radiation for the effective treatment of  keloids: 10-year institutional retrospective analysis. Aesthet Surg J. 2017; 37(2):212-225.
  18. Hultman CS, Edkins RE, Wu C, et al. Prospective, before-after cohort study to assess the efficacy of laser therapy on hypertrophic burn scars. Ann Plast Surg. 2013; 70(5):521-526.
  19. Jin R, Huang X, Li H, et al. Laser therapy for prevention and treatment of pathologic excessive scars. Plast Reconstr Surg. 2013; 132(6):1747-1758.
  20. Kal HB, Veen RE. Biologically effective doses of postoperative radiotherapy in the prevention of keloids. Dose-effect relationship. Strahlenther Onkol. 2005; 181(11):717-723.
  21. Kal HB, Veen RE, Jurgenliemk-Schulz IM. Dose-effect relationships for recurrence of keloid and pterygium after surgery and radiotherapy. Int J Radiat Oncol Biol Phys. 2009; 74(1):245-251.
  22. Kim K, Son D, Kim J. Radiation therapy following total keloidectomy: a retrospective study over 11 years. Arch Plast Surg. 2015; 42(5):588-595.
  23. Klumpar DI, Murray JC, Anscher M. Keloids treated with excision followed by radiation therapy. J Am Acad Dermatol. 1994; 31(2 Pt 1):225-231.
  24. Kuribayashi S, Miyashita T, Ozawa Y, et al. Post-keloidectomy irradiation using high-dose-rate superficial brachytherapy. J Radiat Res. 2011; 52(3):365-368.
  25. Kwon SD, Kye YC. Treatment of scars with a pulsed Er: YAG laser. J Cutan Laser Ther. 2000: 2(1):27-31.
  26. Lee SY, Park J. Postoperative electron beam radiotherapy for keloids: treatment outcome and factors associated with occurrence and recurrence. Ann Dermatol. 2015; 27(1):53-58.
  27. Leventhal D, Furr M, Reiter D. Treatment of keloids and hypertrophic scars: a meta-analysis and review of the literature. Arch Facial Plast Surg. 2006; 8(6):362-368.
  28. Mamalis AD, Lev-Tov H, Nguyen DH, Jagdeo JR. Laser and light-based treatment of keloids - a review. J Eur Acad Dermatol Venereol. 2014; 28(6):689-699.
  29. Manuskiatti W, Fitzpatrick RE. Treatment response of keloidal and hypertrophic sternotomy scars: comparison among intralesional corticosteroid, 5-fluorouracil, and 585-nm flashlamp-pumped pulsed-dye laser treatments. Arch Dermatol. 2002; 138(9):1149-1155.
  30. Mofikoya BO, Adeyemo WL, Abdus-salam AA. Keloid and hypertrophic scars: a review of recent developments in pathogenesis and management. Nig Q J Hosp Med. 2007; 17(4):134-139.
  31. Nanda S, Reddy BS. Intralesional 5-fluorouracil as a treatment modality of keloids. Dermatol Surg. 2004; 30(1):54-56; discussion 56-57.
  32. Ogawa R, Miyashita T, Hyakusoku H, et al. Postoperative radiation protocol for keloids and hypertrophic scars: statistical analysis of 370 sites followed for over 18 months. Ann Plast Surg. 2007; 59(6):688-691.
  33. Ogawa R, Mitsuhashi K, Hyakusoku H, Miyashita T. Postoperative electron-beam irradiation therapy for keloids and hypertrophic scars: retrospective study of 147 cases followed for more than 18 months. Plast Reconstr Surg. 2003; 111(2):547-553; discussion 554-555.
  34. Ogawa R, Yoshitatsu S, Yoshida K, Miyashita T. Is radiation therapy for keloids acceptable? The risk of radiation-induced carcinogenesis. Plast Reconstr Surg. 2009; 124(4):1196-1201.
  35. Sclafani AP, Gordon L, Chadha M, Romo T 3rd. Prevention of earlobe keloid recurrence with postoperative corticosteroid injections versus radiation therapy: a randomized, prospective study and review of the literature. Dermatol Surg. 1996; 22(6):569-574.
  36. Shen J, Lian X, Sun Y, et al. Hypofractionated electron-beam radiation therapy for keloids: retrospective study of 568 cases with 834 lesions. J Radiat Res. 2015; 56(5):811-817.
  37. Tanzi EL, Alster TS. Treatment of atrophic facial acne scars with a dual-mode Er: YAG laser. Dermatol Surg. 2002; 28(7):551-555.
  38. van Leeuwen MC, Stokmans SC, Bulstra AE, et al. High-dose-rate brachytherapy for the treatment of recalcitrant keloids: a unique, effective treatment protocol. Plast Reconstr Surg. 2014; 134(3):527-534.
  39. van Leeuwen MC, Stokmans SC, Bulstra AE, et al. Surgical excision with adjuvant irradiation for treatment of keloid scars: a systematic review. Plast Reconstr Surg Glob Open. 2015; 3(7):e440.
  40. Wolfram D, Tzankov A, Pulzl P, Piza-Katzer H. Hypertrophic scars and keloids - a review of their pathophysiology, risk factors, and therapeutic management. Dermatol Surg. 2009; 35(2):171-181.

Government Agency, Medical Society, and Other Authoritative Publications:

  1. Bickers DR, Lim HW, Margolis D, et al.; American Academy of Dermatology Association; Society for Investigative Dermatology. The burden of skin diseases: 2004 joint project of the American Academy of Dermatology Association and the Society for Investigative Dermatology. J Am Acad Dermatol. 2006; 55(3):490-500.
History

Status

Date

Action

Revised

11/02/2017

Medical Policy & Technology Assessment Committee (MPTAC) review. The document header wording updated from “Current Effective Date” to “Publish Date.” Added MN and Reconstructive statements for treatment of a keloid with radiation therapy (up to 3 fractions) as adjunct therapy following surgical excision (initiated within 3 days) when the medically necessary or reconstructive criteria for keloid removal are met. Minor clarification to the Cosmetic and NMN statement. Updated Discussion, Definitions, Coding, and References sections. Removed Websites for Additional Information section.

Reviewed

02/02/2017

MPTAC review. Updated Discussion/General Information, References, and Websites for Additional Information sections.

Reviewed

02/04/2016

MPTAC review. Updated Websites for Additional Information section. Removed ICD-9 codes from Coding section.

Reviewed

02/05/2015

MPTAC review. Updated Discussion, References, and Websites for Additional Information sections.

Reviewed

02/13/2014

MPTAC review. Updated Discussion, References, and Websites for Additional Information sections.

Reviewed

02/14/2013

MPTAC review. Updated Web Sites for Additional Information. Removed the Index.

New

02/16/2012

MPTAC review. Initial document development. Transferred and rephrased contents and coding that address the treatment of keloids and scar revision from ANC.00007 Cosmetic and Reconstructive Services: Skin Related.