Medical Policy

 

Subject: Hyperthermia for Cancer Therapy
Document #: MED.00026 Publish Date:    06/28/2017
Status: Reviewed Last Review Date:    05/04/2017

Description/Scope

This document addresses hyperthermia for cancer therapy. Hyperthermia is a type of cancer treatment in which body tissue is exposed to high temperatures using external and internal heating devices. Hyperthermia is routinely used with other forms of cancer therapy. Hyperthermia may make cancer cells more sensitive to chemotherapy and radiation therapy or harm other cancer cells radiation cannot damage.

Note: This document does not address hyperthermic intraperitoneal chemotherapy (HIPEC), hyperthermic limb perfusion, radiofrequency ablation to treat tumors outside the liver or locally ablative techniques for treating primary and metastatic liver malignancies.

For information regarding radiofrequency ablation to treat tumors outside the liver or locally ablative techniques for treating primary and metastatic liver malignancies see the following documents:

Position Statement

Medically Necessary:

Local hyperthermia, using either external or interstitial modalities, in combination with radiation therapy is considered medically necessary for the treatment of individuals with primary or metastatic cutaneous or subcutaneous superficial tumors (for example, superficial recurrent melanoma, chest wall recurrence of breast cancer, and cervical lymph node metastases from head and neck cancer).

Treatment should be limited to twice weekly treatments for 5 weeks (10-12 total treatments).

Investigational and Not Medically Necessary:

Local hyperthermia, using either external or interstitial modalities, in conjunction with radiation therapy is considered investigational and not medically necessary for all other uses not identified as medically necessary.

Intraluminal/endocavitary hyperthermia is considered investigational and not medically necessary in the treatment of malignancies.

Regional deep tissue hyperthermia is considered investigational and not medically necessary in the treatment of malignancies.

Whole-body hyperthermia is considered investigational and not medically necessary in the treatment of malignancies.

Hyperthermia in conjunction with chemotherapy is considered investigational and not medically necessary.

Rationale

Local Hyperthermia in Conjunction with Radiation Therapy for Superficial Malignancies

A literature search focused on randomized controlled trials of hyperthermia in superficial malignancies. A variety of studies were published in the 1990s that examined the role of hyperthermia in breast cancer (Vernon, 1996), melanoma (Overgaard, 1995), head and neck cancer (Datta, 1990; Emami, 1996; Valdagni, 1994) and a variety of superficial tumors (Perez, 1991). Not all trials reported positive results, presumably in part related to the difficulty in delivering consistent thermal doses.

Jones and colleagues (2005) reported on a trial of 109 individuals, with a variety of different types of superficial tumors, who were randomized to receive radiation therapy with or without a well defined and consistent dose of hyperthermia. The majority had breast cancer with chest wall involvement. Other groups included those with head and neck cancer and melanoma. Hyperthermia was associated with significantly improved local control (66%) compared to the control group (42%) (p=0.02). Survival was not significantly different between the two groups.

One of the most common superficial tumors is breast cancer. Vernon (1996) published a combined analysis of five randomized trials initiated between 1988 and 1991. A total of 306 individuals were randomized to receive radiation therapy with or without hyperthermia. The primary outcome was complete response rate, which was achieved in 59% of those receiving hyperthermia compared to 41% in the control group.

The National Comprehensive Cancer Network (NCCN) (2017) clinical practice guideline on breast cancer indicates that hyperthermia is a category 3 recommendation when used in conjunction with radiation therapy in individuals with locally recurrent/metastatic breast cancer. A category 3 is defined as major NCCN disagreement among the panel members representing different institutions.

Intraluminal/Endocavitary Hyperthermia in Conjunction with Radiation Therapy

The Dutch Deep Hyperthermia trial was a randomized study designed to investigate the role of once weekly hyperthermia in 114 women with locally advanced cervical cancer (Stage IIB, IIIB or IV). Franckena (2008) published long-term results (12-year) in which the primary end point was local control. Local control was improved in the hyperthermia group compared to the control group (56% vs 37%; p=0.01). Additionally, the improved local control translated to improved survival rates at 12 years (37% vs 20%; p=0.03). The toxicities were similar in both groups. The same group of authors, Franckena (2009), reported on the outcomes of hyperthermia in a prospective case series of 378 individuals with locally advanced cervical cancer. The complete response, local control, and survival rates were similar to the results in the randomized Dutch Deep Hyperthermia Trial. The authors concluded that radiation in conjunction with hyperthermia can be considered as an alternative to chemoradiation therapy in those with locally advanced cervical cancer. However, in the United States, the standard treatment of locally advanced cervical cancer is chemoradiation, and there is inadequate data comparing radiation and hyperthermia to this standard treatment.

The Dutch Deep Hyperthermia trial also enrolled individuals with bladder cancer. An initial improvement in local control rates disappeared during follow up (van der Zee, 2000).

A Cochrane Review (Lutgens, 2010), assessed the role of hyperthermia as an adjunct to radiotherapy in the treatment of locally advanced cervix cancer. The authors reported:

The limited number of patients available for analysis, methodological flaws and a significant over-representation of patients with stage IIIB prohibit drawing definite conclusions regarding the impact of adding hyperthermia to standard radiotherapy.

Regional, Whole Body or Deep Tissue Hyperthermia in Conjunction with Radiation Therapy 

A literature search focusing on randomized controlled trials identified a single study of regional hyperthermia with radiation therapy in 80 individuals with non-small cell lung cancer (Mitsumori, 2007). This trial failed to show any substantial benefit from the addition of hyperthermia to radiotherapy in the treatment of locally advanced non-small cell lung cancer. The literature search did not identify any randomized studies of deep tissue hyperthermia.

Hyperthermia in Conjunction with Chemotherapy with or without Radiation Therapy

Issels and colleagues (2010) reported on a parallel-group randomized controlled trial designed to assess the safety and efficacy of neo-adjuvant regional hyperthermia in conjunction with chemotherapy. A total of 341 individuals were enrolled in the trial between July 21, 1997 and November 30, 2006 at nine European and North American centers. Individuals with localized high-risk soft tissue sarcoma were randomly assigned to receive either chemotherapy consisting of etoposide, ifosfamide, and doxorubicin (EIA) alone (n=172), or combined with regional hyperthermia (EIA plus regional hyperthermia) (n=169) in addition to local therapy. Of all the enrollees, 151 subjects (89.3%) in the EIA plus regional hyperthermia group and 146 (84.9%) in the EIA alone group completed induction chemotherapy. One hundred twenty-nine subjects (76.3%) in the combined treatment group received seven to eight regional hyperthermia treatments, 33 (19.5%) received one to six regional hyperthermia treatments, and 7 (4.1%) received none. Most of the study subjects (90.6%) also underwent surgery (155 EIA plus regional hyperthermia vs 154 EIA alone). Approximately two-thirds of the individuals underwent a tumor resection and others underwent amputation. One hundred eight subjects in the combined treatment group and 106 in the EIA alone group received radiotherapy. Sixty one subjects in the combined treatment group and 64 in the EIA alone group did not receive radiotherapy. The primary reason for not receiving radiotherapy was an abdominal or retroperitoneal tumor location. More subjects in the combined treatment group completed full post-induction chemotherapy as compared to the EIA alone group (89 [52.7%] vs 71 [41.3%]; p=0.020). A similar number did not receive post-induction therapy (43 in the combined treatment group vs 47 in the EIA alone group) due to non-compliance. Also, in the combined treatment group 60 subjects (35.5%) received seven to eight regional hyperthermia treatments, 28 (16.6%) received one to six regional hyperthermia treatments and 66 did not receive any regional hyperthermia. Reasons for not receiving regional hyperthermia were side effect related or intolerance to heat treatment. The overall duration of study treatment was 32.4 weeks for the combined treatment group versus 29.1 weeks in the EIA alone group. The primary outcome of the study was local progression-free survival which was defined as "the time from randomization to confirmed local progression, relapse, or death, whichever occurred first and irrespective of any occurrence of distant metastases." Secondary endpoints were disease-free survival, overall survival, tumor response after induction therapy, treatment toxicity, and long-term complications.

Subjects were observed as more likely to experience local progression or death in the EIA alone group compared with the EIA plus regional hyperthermia group (relative hazard [RH] 0.58, 95% confidence interval [CI], 0.41-0.83; p=0.003). For disease-free survival the relative hazard was 0.70 (95% CI, 0.54-0.92, p=0.011) for EIA plus regional hyperthermia compared with EIA alone. The treatment response rate in the group that received regional hyperthermia was 28.8%, compared with 12.7% in the group who received chemotherapy alone (p=0.002). After a median follow-up time of 34 months, 132 subjects had local progression (56 EIA plus regional hyperthermia vs 76 EIA). A total of 153 individuals died during the follow-up period of 128 months with 2 deaths attributed to treatment in the combined treatment group, and 1 death was attributed to treatment in the EIA alone group. A higher incidence of hematological toxicity (leukopenia 72.6% vs 63.5%, p=0.005) was noted in the combined therapy group compared with EIA alone. When all individuals who were assigned to treatment were analyzed, there was no evidence of a difference in overall survival between the EIA alone group and the combined treatment group. Among the 269 individuals who completed induction therapy (4 cycles EIA plus 8 regional hyperthermias vs 4 cycles EIA alone) there was a significant difference in overall survival in the combined therapy group compared with the EIA alone group (HR 0.66, p=0.038). The authors indicated that this was the first randomized phase 3 trial to show that regional hyperthermia increases the benefit of chemotherapy. Although study results may show promise, there is a need for additional controlled studies to confirm these early findings.

Chen and colleagues (2012) enrolled 358 individuals with malignant pleural effusion in a prospective randomized trial designed to evaluate the safety and efficacy of intrapleural chemotherapy consisting of cisplatin and OK-432 (picinbanil) plus hyperthermia. Two study groups across four Chinese cancer centers consisted of 179 subjects each. Those in group A received the intrapleural combination of cisplatin and OK-432 with hyperthermia, while Group B received the same intrapleural combination without hyperthermia. Quality of life scores increased in both groups as compared to prior treatment. The survival follow-up period varied from 3 to 24 months. A total of 26 subjects in group A and 24 in group B were lost to follow-up. The median survival in group A (8.9 months) and group B (6.2 months) were similar (p>0.05).  

Several studies (Heijkoop, 2012; Westerman, 2012) have investigated a triple combination therapy consisting of regional hyperthermia, chemotherapy and brachytherapy for the treatment of advanced cancer of the cervix. Westermann and colleagues (2012) enrolled 68 women with advanced cervical cancer in a small prospective registry study in the USA, Norway and the Netherlands. Treatment consisted of a triple combination of regional whole pelvis hyperthermia (four weekly sessions), chemotherapy (at least four courses of weekly cisplatin) and radiotherapy (brachytherapy and external beam radiotherapy). At a median follow-up of 81 months, tumors returned in 28 women resulting in 21 deaths. The 5-year recurrence-free survival in the study was 57.5% and 5-year overall survival was 66.1%. The authors indicated that survival results with the addition of whole pelvic HT to RT and chemotherapy for advanced cervical cancer were comparable to historical controls. This study was limited by a small size and lack of a concurrent control group.

Heijkoop and colleagues (2012) also studied triple combination therapy consisting of hyperthermia, chemotherapy, and radiotherapy in a pilot study of women with advanced stage cervical cancer. A total of 43 women were treated with platinum-based chemotherapy, followed by radiotherapy, brachytherapy and five hyperthermia treatments. A total of 67% completed all six planned courses of chemotherapy. At the end of chemotherapy, 83.7% achieved a complete or partial response. At the end of treatment, the complete response rate was 81.4%. The median follow-up time was 29.8 months (range 4.1-124.8). Overall survival rate at 12 months was 79%. The authors recommended proceeding to a phase II trial to obtain additional information. This trial was limited by a small size and lack of a comparator.

Schroeder and colleagues (2012) evaluated the impact of regional hyperthermia with neoadjuvant chemoradiation on rates of complete pathological response (pCR) and sphincter-sparing surgery for locally advanced rectal cancer. Between 2007 and 2010, 106 individuals received treatment consisting of neoadjuvant chemoradiation either with (n=61) or without (n=45) regional hyperthermia in a non-randomized fashion. A retrospective comparison was performed between the two groups: 45 subjects received standard treatment consisting of 5040 cGy in 28 fractions to the pelvis and 5-fluorouracil (RCT group) and 61 subjects received the same treatment in combination with regional hyperthermia (HRCT group). A pCR occurred in 6.7% of the RCT group and in 16.4% of the HRCT group. Those who received at least four hyperthermia treatments (n=40) achieved a significantly higher pCR rate (22.5%) than the remaining 66 subjects (p=0.043). Rates of sphincter-sparing surgery were similar in both groups. The authors conclude that "a randomised trial comparing RCT and HRCT with well defined inclusion criteria for high-risk patients is warranted."

A Phase II study combining hyperthermia concurrent with neoadjuvant chemoradiotherapy (nCRT) for advanced rectal cancer (Barsukov, 2013) enrolled 64 previously untreated individuals. Hyperthermia was combined with chemoradiotherapy and subsequent resection was performed in 59 subjects (92.2%). A total of 5 individuals (7.8%) were deemed inoperable. Median follow up was 24.9 months. The 2-year overall survival was 91% and 2-year disease-free survival was 83%. Study limitations include lack of randomization and lack of a control group.

There has also been interest in combining hyperthermia with intravesicular chemotherapy in individuals with bladder cancer. However, published evidence is very limited.

Background/Overview

Hyperthermia is a type of cancer treatment in which body tissue is exposed to high temperatures using external and internal heating devices. Early clinical studies suggest tumor cells may be more sensitive to increased temperature as compared with normal cells, that heat may enhance the tumoricidal effects of radiation or chemotherapy and overcome acquired drug resistance, and that elevated temperatures can stimulate certain components of the immune system, which may aid in destroying cancer cells. A number of methods of hyperthermia are currently under study, including local, regional, and whole-body hyperthermia.

In local hyperthermia, heat is applied to a small area, such as a tumor, using various techniques that deliver energy to heat the tumor. Different types of energy may be used to apply heat, including microwave, radiofrequency, and ultrasound. Depending on the tumor location, there are several approaches to local hyperthermia. External approaches are used to treat tumors in or just below the skin. External applicators are positioned around or near the tumor, and energy is focused on the tumor to raise the temperature. Intraluminal or endocavitary methods may be used to treat tumors within or near body cavities, such as the esophagus or rectum. Probes are placed inside the cavity and inserted into the tumor to deliver energy and heat the area directly. Interstitial techniques are used to treat tumors deep within the body, such as brain tumors. This technique allows the tumor to be heated to higher temperatures than external techniques. Radiofrequency ablation is a type of interstitial hyperthermia using radio waves to heat and kill cancer cells.

In regional hyperthermia, various approaches may be used to heat large areas of tissue, such as a body cavity, organ, or limb. Regional deep tissue hyperthermia may be used to treat cancers within the body, such as cervical or bladder cancer. External applicators are positioned around the body cavity or organ to be treated, and microwave or radiofrequency energy is focused on the area to raise its temperature. 

Whole body hyperthermia (WBH) has been proposed as a therapy, most commonly as an adjunct to radiotherapy or chemotherapy, to treat metastatic cancer that has spread throughout the body. WBH is achieved with either radiant heat or extracorporeal technologies that raise the body temperature to 107-108°F. In radiant WBH, heat is externally applied to the whole body using hot water blankets, hot wax, inductive coils, or thermal chambers. The individual is sedated throughout the WBH procedure, which lasts approximately 4 hours. Extracorporeal WBH is achieved by re-infusion of extracorporeally heated blood. A circuit of blood is created outside the body by accessing an artery, usually the femoral artery, and creating an extracorporeal loop. The circulating blood is passed through a heating device, usually a water bath or hot air, and the heated blood is then re-injected into a major vein. The desired body temperature is adjusted and controlled by changing the volume flow of the warmed re-infused blood. Extracorporeal hyperthermia treatments are conducted under general anesthesia.

Coding

The following codes for treatments and procedures applicable to this document are included below for informational purposes.  Inclusion or exclusion of a procedure, diagnosis or device code(s) does not constitute or imply member coverage or provider reimbursement policy. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

When services may be Medically Necessary when criteria are met:

CPT  
77600 Hyperthermia, externally generated; superficial (ie, heating to a depth of 4 cm or less)
77610 Hyperthermia generated by interstitial probe(s); 5 or fewer interstitial applicators
77615 Hyperthermia generated by interstitial probe(s); more than 5 interstitial applicators
   
ICD-10 Procedure  
D0Y78ZZ Hyperthermia of peripheral nerve
D7Y38ZZ Hyperthermia of neck lymphatics
D7Y48ZZ Hyperthermia of axillary lymphatics
D7Y88ZZ Hyperthermia of inguinal lymphatics
DBY78ZZ Hyperthermia of chest wall
DHY28ZZ Hyperthermia of face skin
DHY38ZZ Hyperthermia of neck skin
DHY48ZZ Hyperthermia of arm skin
DHY68ZZ Hyperthermia of chest skin
DHY78ZZ Hyperthermia of back skin
DHY88ZZ Hyperthermia of abdomen skin
DHY98ZZ Hyperthermia of buttock skin
DHYB8ZZ Hyperthermia of leg skin
DMY08ZZ Hyperthermia of left breast
DMY18ZZ Hyperthermia of right breast
DWY18ZZ Hyperthermia of head and neck
DWY28ZZ Hyperthermia of chest
DWY38ZZ Hyperthermia of abdomen
DWY68ZZ Hyperthermia of pelvic region
   
ICD-10 Diagnosis  
C00.0-C14.8 Malignant neoplasm of lip, oral cavity and pharynx
C43.0-C43.9 Malignant melanoma of skin
C4A.0-C4A.9 Merkel cell carcinoma
C44.00-C44.99 Other malignant neoplasm of skin
C49.0-C49.9 Malignant neoplasm of other connective and soft tissue
C50.011-C50.929 Malignant neoplasm of breast
C76.1 Malignant neoplasm of thorax
C77.0 Secondary and unspecified malignant neoplasm of lymph nodes of head, face and neck
C79.2 Secondary malignant neoplasm of skin
C79.81 Secondary malignant neoplasm of breast
C79.89 Secondary malignant neoplasm of other specified sites [chest wall]
D03.0-D03.9 Melanoma in situ
D04.0-D04.9 Carcinoma in situ of skin
D09.8 Carcinoma in situ of other specified sites

When services are Investigational and Not Medically Necessary:
For the procedure and diagnosis codes listed above when criteria are not met, for all other diagnoses not listed; or when the code describes a procedure indicated in the Position Statement section as investigational and not medically necessary.

When services are also Investigational and Not Medically Necessary:

CPT  
77605 Hyperthermia, externally generated; deep (ie, heating to depths greater than 4 cm)
77620 Hyperthermia generated by intracavitary probe(s)
   
ICD-10 Procedure  
D0Y08ZZ Hyperthermia of brain
D0Y18ZZ Hyperthermia of brain stem
D0Y68ZZ Hyperthermia of spinal cord
D7Y08ZZ Hyperthermia of bone marrow
D7Y18ZZ Hyperthermia of thymus
D7Y28ZZ Hyperthermia of spleen
D7Y58ZZ Hyperthermia of thorax lymphatics
D7Y68ZZ Hyperthermia of abdomen lymphatics
D7Y78ZZ Hyperthermia of pelvis lymphatics
D8Y08ZZ Hyperthermia of eye
D9Y08ZZ Hyperthermia of ear
D9Y18ZZ Hyperthermia of nose
D9Y38ZZ Hyperthermia of hypopharynx
D9Y48ZZ Hyperthermia of mouth
D9Y58ZZ Hyperthermia of tongue
D9Y68ZZ Hyperthermia of salivary glands
D9Y78ZZ Hyperthermia of sinuses
D9Y88ZZ Hyperthermia of hard palate
D9Y98ZZ Hyperthermia of soft palate
D9YB8ZZ Hyperthermia of larynx
D9YD8ZZ Hyperthermia of nasopharynx
D9YF8ZZ Hyperthermia of oropharynx
DBY08ZZ Hyperthermia of trachea
DBY18ZZ Hyperthermia of bronchus
DBY28ZZ Hyperthermia of lung
DBY58ZZ Hyperthermia of pleura
DBY68ZZ Hyperthermia of mediastinum
DBY88ZZ Hyperthermia of diaphragm
DDY08ZZ Hyperthermia of esophagus
DDY18ZZ Hyperthermia of stomach
DDY28ZZ Hyperthermia of duodenum
DDY38ZZ Hyperthermia of jejunum
DDY48ZZ Hyperthermia of ileum
DDY58ZZ Hyperthermia of colon
DDY78ZZ Hyperthermia of rectum
DFY08ZZ Hyperthermia of liver
DFY18ZZ Hyperthermia of gallbladder
DFY28ZZ Hyperthermia of bile ducts
DFY38ZZ Hyperthermia of pancreas
DGY08ZZ Hyperthermia of pituitary gland
DGY18ZZ Hyperthermia of pineal body
DGY28ZZ Hyperthermia of adrenal glands
DGY48ZZ Hyperthermia of parathyroid glands
DGY58ZZ Hyperthermia of thyroid
DPY08ZZ Hyperthermia of skull
DPY28ZZ Hyperthermia of maxilla
DPY38ZZ Hyperthermia of mandible
DPY48ZZ Hyperthermia of sternum
DPY58ZZ Hyperthermia of rib(s)
DPY68ZZ Hyperthermia of humerus
DPY78ZZ Hyperthermia of radius/ulna
DPY88ZZ Hyperthermia of pelvic bones
DPY98ZZ Hyperthermia of femur
DPYB8ZZ Hyperthermia of tibia/fibula
DPYC8ZZ Hyperthermia of other bone
DTY08ZZ Hyperthermia of kidney
DTY18ZZ Hyperthermia of ureter
DTY28ZZ Hyperthermia of bladder
DTY38ZZ Hyperthermia of urethra
DUY08ZZ Hyperthermia of ovary
DUY18ZZ Hyperthermia of cervix
DUY28ZZ Hyperthermia of uterus
DVY08ZZ Hyperthermia of prostate
DVY18ZZ Hyperthermia of testis
DWY48ZZ Hyperthermia of hemibody
DWY58ZZ Hyperthermia of whole body
   
ICD-10 Diagnosis  
  All diagnoses
   
References

Peer Reviewed Publications:

  1. Barsukov YA, Gordeyev SS, Tkachev SI, et al. Phase II study of concomitant chemoradiotherapy with local hyperthermia and metronidazole for locally advanced fixed rectal cancer. Colorectal Dis. 2013; 15(9):1107-1114.
  2. Chang P, Sapozink MD, Grunberg SM, et al. Unresectable primary and recurrent head and neck tumors; effect of hyperthermia and carboplatin-preliminary experience. Radiology. 2000; 214:688-692.
  3. Chen WJ, Yuan SF, Yan QY, et al. Intrapleural chemo- and hyperthermotherapies for malignant pleural effusion: a randomized prospective study. Cancer Invest. 2012; 30(2):126-130.
  4. Datta NR, Bose AK, Kapoor HK. Head and neck cancers: results of thermoradiotherapy versus radiotherapy. Int J Hyperthermia. 1990; 6(3):479-486.
  5. Emami B, Scott C, Perez CA, et al. Phase III study of interstitial thermoradiotherapy compared with interstitial radiotherapy alone in the treatment of recurrent or persistent human tumors. A prospectively controlled randomized study by the Radiation Therapy Group. Int J Radiat Oncol Biol Phys. 1996; 34(5):1097-1104.
  6. Franckena M, Lutgens LC, Koper PC et al. Radiotherapy and hyperthermia for treatment of primary locally advanced cervix cancer: results in 378 patients. Int J Radiat Oncol Biol Phys. 2009; 73(1):242-250.
  7. Franckena M, Stalpers LJ, Koper PC et al. Long-term improvement in treatment outcome after radiotherapy and hyperthermia in locoregionally advanced cervix cancer: an update of the Dutch Deep Hyperthermia Trial. Int J Radiat Oncol Biol Phys. 2008; 70:1176-1182.
  8. Heijkoop ST, Franckena M, Thomeer MG, et al. Neoadjuvant chemotherapy followed by radiotherapy and concurrent hyperthermia in patients with advanced-stage cervical cancer: a retrospective study. Int J Hyperthermia. 2012; 28(6):554-561.
  9. Issels RD, Lindner LH, Verweij J, et al.European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group (EORTC-STBSG); European Society for Hyperthermic Oncology (ESHO). Neo-adjuvant chemotherapy alone or with regional hyperthermia for localized high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study. Lancet Oncol. 2010; 11(6):561-570.
  10. Jones EL, Oleson JR, Prosnitz LR, et al. Randomized trial of hyperthermia and radiation for superficial tumors. J. Clinical Oncology. 2005; 23(13):3079-3085.
  11. Lutgens L, van der Zee J, Pijls-Johannesma M, et al. Combined use of hyperthermia and radiation therapy for treating locally advanced cervix carcinoma. Cochrane Database Syst Rev. 2010; (3):CD006377.
  12. Mitsumori M, Zeng ZF, Oliynychenko P et al. Regional hyperthermia combined with radiotherapy for locally advanced non-small cell lung cancers: a multi-institutional prospective randomized trial of the International Atomic Energy Agency Int J Clin Oncol. 2007; 12: 192-198.
  13. Overgaard J, Gonzalez Gonazalez D, et al. Randomized trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma. European Society for Hyperthermic Oncology. Lancet 1995; 345(8949):540-543.
  14. Perez CA; Pajak T; Emami B, et al. Randomized phase III study comparing irradiation and hyperthermia with irradiation alone in superficial measurable tumors. Final report by the Radiation Therapy Oncology Group. Am J Clin Oncol. 1991; 14:133-141.
  15. Schroeder C, Gani C, Lamprecht U, et al. Pathological complete response and sphincter-sparing surgery after neoadjuvant radiochemotherapy with regional hyperthermia for locally advanced rectal cancer compared with radiochemotherapy alone. Int J Hyperthermia. 2012; 28(8):707-714.
  16. Valdagni R, Amichetti M. Report of long-term follow-up in a randomized trial comparing radiation therapy and radiation therapy plus hyperthermia to metastatic lymph nodes in stage IV head and neck patients. Int J Radiat Oncol Biol Phys. 1994; 28(1):163-169.
  17. van der Zee J, González González D, van Rhoon GC. Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Dutch Deep Hyperthermia Group. Lancet. 2000; 355(9210):1119-1125.
  18. Vernon CC; Hand JW; Field S, et al. Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: results from five randomized controlled trials. International Collaborative Hyperthermia Group. Int J Radiat Oncol Biol Phys. 1996; 35:731-744.
  19. Westermann A, Mella O, Van Der Zee J, et al. Long-term survival data of triple modality treatment of stage IIB-III-IVA cervical cancer with the combination of radiotherapy, chemotherapy and hyperthermia - an update. Int J Hyperthermia. 2012; 28(6):549-553.

Government Agency, Medical Society, and Other Authoritative Publications:

  1. Centers for Medicare and Medicaid Services. National Coverage Determination for Hyperthermia for the treatment of Cancer. NCD #110.1. Effective December 31, 1984. Available at: https://www.cms.gov/medicare-coverage-database/details/ncd-details.aspx?NCDId=66&ncdver=1&SearchType=Advanced&CoverageSelection=National&NCSelection=NCA%7cCAL%7cNCD%7cMEDCAC%7cTA%7cMCD&KeyWord=hyperthermia&KeyWordLookUp=Doc&KeyWordSearchType=Exact&kq=true&bc=IAAAACAAAAAAAA%3d%3d& . Accessed on March 9, 2017.
  2. National Comprehensive Cancer Network (NCCN). Clinical guidelines in Oncology. Breast cancer. V.1.2017. Rockledge, PA: NCCN; 2016. For additional information visit the NCCN website: http://www.nccn.org/index.asp. Accessed on March 16, 2017.
Websites for Additional Information
  1. American Cancer Society. Hyperthermia. Available at: https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/hyperthermia.html . Accessed on March 9, 2017.
  2. National Cancer Institute. National Institutes of Health. Hyperthermia in cancer treatment: Questions and answers. Reviewed 8/31/2011. Available at: http://www.cancer.gov/cancertopics/factsheet/Therapy/hyperthermia. Accessed on March 9, 2017.
Index

Local Hyperthermia
Regional Deep Tissue Hyperthermia
Regional Perfusion Hyperthermic Techniques
Systemic Thermotherapy
Thermal Therapy
Whole Body Hyperthermia (WBH)

Document History

Status

Date

Action

Reviewed 05/04/2017 Medical Policy & Technology Assessment Committee (MPTAC) review.
Reviewed 05/03/2017 Hematology/Oncology Subcommittee review. Updated References and Websites sections.
Reviewed 05/05/2016 MPTAC review.
Reviewed 05/04/2016 Hematology/Oncology Subcommittee review. Rationale and Reference sections updated. Removed ICD-9 codes from Coding section.
Reviewed 05/07/2015 MPTAC review.
Reviewed 05/06/2015 Hematology/Oncology Subcommittee review. Description, Rationale and Reference sections updated.
Reviewed 05/15/2014 MPTAC review.
Reviewed 05/14/2014 Hematology/Oncology Subcommittee review. Rationale and Reference sections updated.
Reviewed 05/09/2013 MPTAC review.
Reviewed 05/08/2013 Hematology/Oncology Subcommittee review. Description (note), Rationale and Reference sections updated.
Reviewed 05/10/2012 MPTAC review.
Reviewed 05/09/2012 Hematology/Oncology Subcommittee review. Description, Rationale and Reference sections updated. Web Sites for Additional Information section added.
  10/01/2011 Updated Coding section with 10/01/2011 ICD-9 changes.
Reviewed 05/19/2011 MPTAC review.
Reviewed 05/18/2011 Hematology/Oncology Subcommittee review. Rationale and Reference sections updated.
Reviewed 05/13/2010 MPTAC review.
Reviewed 05/12/2010 Hematology/Oncology Subcommittee review. Rationale, coding and references updated.
Reviewed 05/21/2009 MPTAC review.
Reviewed 05/20/2009 Hematology/Oncology Subcommittee review. Rationale and references updated.
Reviewed 05/15/2008 MPTAC review.
Reviewed 05/14/2008 Hematology/Oncology Subcommittee review. Description, rationale, background, coding, references, and index updated.
  02/21/2008 The phrase "investigational/not medically necessary" was clarified to read "investigational and not medically necessary." This change was approved at the November 29, 2007 MPTAC meeting.
Revised 05/17/2007 MPTAC review.
Revised 05/16/2007 Hematology/Oncology Subcommittee review. Definition of local hyperthermia updated to include interstitial. Rationale, coding and references updated.
Reviewed 06/08/2006 MPTAC review. No change in position. Rationale and references updated.
Reviewed 06/07/2006 Hematology/Oncology Subcommittee review.
  11/18/2005 Added reference for Centers for Medicare and Medicaid Services (CMS) – National Coverage Determination (NCD).
Revised 07/14/2005 MPTAC review. Revision based on Pre-merger Anthem and Pre-merger WellPoint Harmonization.
Pre-Merger Organizations

Last Review Date

Document Number

Title

Anthem, Inc.

03/20/2003

MED.00026 Hyperthermia
WellPoint Health Networks, Inc.

06/24/2004

4.01.02 Radiation Therapy with Hyperthermia