Medical Policy



Subject: Nasal Surgery for the Treatment of Obstructive Sleep Apnea (OSA) and Snoring
Document #: SURG.00074 Current Effective Date:    09/27/2017
Status: Reviewed Last Review Date:    08/03/2017

Description/Scope

This document addresses nasal surgery for the treatment of obstructive sleep apnea (OSA) and snoring.

Note: Please see the following related documents for additional information:

Position Statement

Not Medically Necessary:

Nasal surgery employing any technique is considered not medically necessary for the treatment of snoring.

Investigational and Not Medically Necessary:

Nasal surgery employing any technique, including nasal valve surgery, septoplasty, turbinectomy, polypectomy and laser or radiofrequency ablation (volumetric tissue reduction) of the nasal turbinates is considered investigational and not medically necessary for the treatment of obstructive sleep apnea and other sleep related breathing disorders.

Rationale

Studies suggest stimulation of receptors in the nasal airway improves muscle tone in the oropharynx, and increased nasal resistance results in increased negative intraluminal pressure, causing an increased tendency for the soft tissues of the upper airway (soft palate and pharyngeal walls) to collapse. In addition, nasal obstruction may lead to mouth breathing and mouth opening which, in turn, results in inferior movement of the mandible with associated decrease in pharyngeal diameter. The base of the tongue may also fall backwards reducing the posterior pharyngeal space. The rationale for nasal surgery is to improve nasal patency re-establishing physiological breathing and minimizing oral breathing during sleep; also to reduce nasal resistance and improve the negative intraluminal pressure which generates upper airway collapse.

However, studies have not demonstrated that reducing nasal obstruction and resistance from various causes and using various techniques, (for example, septoplasty, turbinectomy, polypectomy, radiofrequency volumetric tissue reduction [RFVTR] of inferior nasal turbinates) correlates with a significant reduction in objective OSA indicators, such as the Apnea-Hypopnea Index (AHI) or nocturnal oxygen desaturation. Although some case reports have suggested that surgical correction of nasal obstruction may improve subjective daytime complaints in individuals with OSA, studies in general have been flawed by relatively small numbers of study subjects, the fact that nasal surgery is often performed in association with other surgical procedures, and lack of objective data regarding nasal resistance and OSA diagnostic variables.

In their June 2003 review article, Chen and Kushida concluded that, "The exact role obstructed nasal breathing plays in the pathogenesis of OSA type sleep disorders remains presumptive, and robust clinical studies to evaluate the contribution of nasal function remain elusive. More stringently controlled studies are needed." Another review by Rappai concluded that, "To date, there are no compelling data to demonstrate causality between nasal obstruction and persistent sleep disordered breathing." They point out that most of the studies reviewed in their 2003 review article are short term, or only examined subjective outcomes to evaluate the effect on sleep disordered breathing. The authors concluded that further studies are needed to prove specific causality. There continues to be a lack of large, well-designed clinical trials sufficiently powered to support the safety and efficacy of nasal surgical procedures for OSA.

In a Cochrane review, Rimmer and colleagues (2014) found:

The evidence relating to the effectiveness of different types of surgery versus medical treatment for adults with chronic rhinosinusitis with nasal polyps is of very low quality. The evidence does not show that one treatment is better than another in terms of patient-reported symptom scores and quality of life measurements. The one positive finding from amongst the several studies examining a number of different comparisons must be treated with appropriate caution, in particular when the clinical significance of the measure is uncertain. As the overall evidence is of very low quality (serious methodological limitations, reporting bias, indirectness and imprecision) and insufficient to draw firm conclusions, further research to investigate this problem, which has significant implications for quality of life and healthcare service usage, is justified.

Another proposed use of nasal surgical procedures is to improve compliance with continuous positive airway pressure (CPAP) use in individuals with OSA and nasal obstruction requiring high CPAP settings. To date, CPAP intolerance has been investigated in small retrospective studies with some favorable evidence showing reduced postoperative CPAP titration levels by at least 1 cm water. However, variable additional factors also impact CPAP compliance, such as individual perception of symptoms and improvement in sleepiness and daily function from initial use of CPAP. For these reasons, larger, well-designed studies are needed to confirm the durability of any beneficial effect on CPAP compliance from nasal surgical procedures for individuals with OSA (Friedman, 2009; Masdon, 2004; Weaver, 2008; Zonato, 2006).

In a review, Bury and colleague (2015) found that snoring and obstructive sleep apnea have been well researched. While the studies supporting nasal surgery for snoring can improve the quality of life, it may not lead to the resolution of snoring. Likewise, compliance with nasal treatments for OSA may increase the quality of life in some individuals. Further well-designed studies are needed to clarify the role of nasal surgery in OSA, with stratification of individuals who may benefit from nasal intervention.

The American Academy of Otolaryngology—Head and Neck Surgery Foundation (2015) published a clinical consensus statement addressing: Septoplasty with or without Inferior Turbinate Reduction. Utilizing the Delphi Method, a panel of specialists considered eight areas, one of which was surgical, addressing septoplasty. Based on an anonymous survey response, the panel reached consensus stating that:

It still remains that well-designed, randomized studies are necessary to define appropriate criteria for OSA surgical procedures.

Background/Overview

It has been postulated that increased nasal resistance may contribute to, or be causative in, sleep related breathing disorders, such as OSA. Nasal procedures that have been performed for the treatment of OSA include the following:

Definitions

Chronic: Refers to persistent conditions with symptoms that last over a long period of time.

Delphi Method: A structured communication technique or method originally developed as a systematic, interactive forecasting method which relies on a panel of experts. The experts answer questionnaires in two or more rounds.

Latera Absorbable Nasal Implant: This new device from Spirox, Inc. (Menlo Park, CA) obtained FDA clearance via the 510(k) approval process on June 23, 2016 and is indicated for, "Supporting nasal upper and lower lateral cartilage." This implantable device is proposed to assist in the surgical correction of collapsed nasal wall tissue and possibly improving nasal obstruction.

Nasal turbinates: The scroll-like bony plates with curved margins on the lateral wall of the nasal cavity.

Sleep apnea: Temporary stoppage of breathing during sleep, which can result in excessive daytime sleepiness.

Somnoplasty® (also referred to as radiofrequency ablation or radiofrequency volumetric tissue reduction): These terms refer to a minimally invasive surgical procedure that reduces the excess volume of the surrounding tissues in the upper airway, in order to enlarge the space. These procedures have been purported to reduce the symptoms of OSA and snoring. Although the procedure has been used to remove tissue from the turbinates and tonsils, recent studies of RFA in the treatment of OSA have limited the procedure to the soft palate, uvula and tongue base. The Somnoplasty® System (Somnus Medical Technologies, Sunnyvale, CA) received clearance from the U.S. Food and Drug Administration (FDA) on July 17, 1997 for coagulation of soft tissue, including the uvula/soft palate. The 510(k) summary states that, "The Somnoplasty system may reduce the severity of snoring in some individuals." An expanded approval on November 2, 1998 states that, "The system is intended for the reduction of the incidence of airway obstruction in patients with upper airway resistance syndrome and OSA."

Coding

The following codes for treatments and procedures applicable to this document are included below for informational purposes. Inclusion or exclusion of a procedure, diagnosis or device code(s) does not constitute or imply member coverage or provider reimbursement policy. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

When Services are Not Medically Necessary:

CPT  
30110 Excision, nasal polyp(s), simple
30115 Excision, nasal polyp(s), extensive
30130 Excision inferior turbinate, partial or complete, any method
30140 Submucous resection inferior turbinate, partial or complete, any method
30465 Repair of nasal vestibular stenosis (e.g., spreader grafting, lateral nasal wall reconstruction)
30520 Septoplasty or submucous resection, with or without cartilage scoring, contouring or replacement with graft
30801 Ablation, soft tissue of inferior turbinates, unilateral or bilateral, any method (e.g., electrocautery, radiofrequency ablation, or tissue volume reduction); superficial
30802 Ablation, soft tissue of inferior turbinates, unilateral or bilateral, any method (e.g., electrocautery, radiofrequency ablation, or tissue volume reduction); intramural (i.e., submucosal)
30999 Unlisted procedure, nose [when specified as a nasal procedure, such as placement of Latera implant, performed for treatment of snoring or sleep apnea]
31237 Nasal/sinus endoscopy, surgical; with biopsy, polypectomy or debridement (separate procedure)
   
ICD-10 Procedure  
095K0ZZ-095KXZZ Destruction of nose [by approach; includes codes 095K0ZZ, 095K3ZZ, 095K4ZZ, 095KXZZ]
095L0ZZ-095L8ZZ Destruction of nasal turbinate [by approach; includes codes 095L0ZZ, 095L3ZZ, 095L4ZZ, 095L7ZZ, 095L8ZZ]
09BK0ZZ-09BKXZZ Excision of nose [by approach; includes codes 09BK0ZZ, 09BK3ZZ, 09BK4ZZ, 09BKXZZ]
09BL0ZZ-09BL8ZZ Excision of nasal turbinate [by approach; includes codes 09BL0ZZ, 09BL3ZZ, 09BL4ZZ, 09BL7ZZ, 09BL8ZZ]
09BM0ZZ-09BM4ZZ Excision of nasal septum [by approach; includes codes 09BM0ZZ, 09BM3ZZ, 09BM4ZZ]
09DL0ZZ-09DL8ZZ Extraction of nasal turbinate [by approach; includes codes 09DL0ZZ, 09DL3ZZ, 09DL4ZZ, 09DL7ZZ, 09DL8ZZ]
09TL0ZZ-09TL8ZZ Resection of nasal turbinate [by approach; includes codes 09TL0ZZ, 09TL4ZZ, 09TL7ZZ, 09TL8ZZ]
09TM0ZZ-09TM4ZZ Resection of nasal septum [by approach; includes codes 09TM0ZZ, 09TM4ZZ]
   
ICD-10 Diagnosis  
R06.83 Snoring

When services are Investigational and Not Medically Necessary:
For the procedure codes listed above for the diagnoses listed below; or when the code describes a procedure indicated in the Position Statement section as investigational and not medically necessary.

ICD-10 Diagnosis  
G47.30-G47.39 Sleep apnea
G47.8 Other sleep disorders
G47.9 Sleep disorder, unspecified
   
References

Peer Reviewed Publications:

  1. Bäck LJ, Hytonen ML, Roine RP, Malmivaara AV. Radiofrequency ablation treatment of soft palate for patients with snoring: a systematic review of effectiveness and adverse effects. Laryngoscope. 2009; 119(6):1241-1250.
  2. Bican A, Kahraman A, Bora I, et al. What is the efficacy of nasal surgery in patients with obstructive sleep apnea syndrome? J Craniofac Surg. 2010; 21(6):1801-1806.
  3. Blumen MB, Chalumeau F, Gauthier A, et al. Comparative study of four radiofrequency generators for the treatment of snoring. Otolaryngol Head Neck Surg. 2008; 138(3):294-299.
  4. Bury SB1, Singh A. The role of nasal treatments in snoring and obstructive sleep apnea. Curr Opin Otolaryngol Head Neck Surg. 2015; 23(1):39-46.
  5. Cavaliere M, Mottola G, Iemma M. Monopolar and bipolar radiofrequency thermal ablation of inferior turbinates: 20-month follow-up. Otolaryngol Head Neck Surg. 2007; 137(2):256-263.
  6. Ceylan K, Emir H, Kizilkaya Z, et al. First-choice treatment in mild to moderate obstructive sleep apnea: single-stage, multilevel, temperature-controlled radiofrequency tissue volume reduction or nasal continuous positive airway pressure. Arch Otolaryngol Head Neck Surg. 2009; 135(9):915-919.
  7. Chen W, Kushida, CA. Nasal obstruction in sleep disordered breathing. Otolaryngol Clin North Am. 2003; 36(3):437-460.
  8. Choi JH, Kim EJ, Kim YS, et al. Effectiveness of nasal surgery alone on sleep quality, architecture, position, and sleep-disordered breathing in obstructive sleep apnea syndrome with nasal obstruction. Am J Rhinol Allergy. 2011; 25(5):338-341.
  9. Franklin KA, Anttila H, Axelsson S, et al. Effects and side-effects of surgery for snoring and obstructive sleep apnea—a systematic review. Sleep. 2009; 32(1):27-36.
  10. Friedman M, Lin HC, Gurpinar B, Joseph NJ. Minimally invasive single-stage multilevel treatment for obstructive sleep apnea/hypopnea syndrome. Laryngoscope. 2007; 117(10):1859-1863.
  11. Friedman M, Soans R, Joseph N, et al. The effect of multilevel upper airway surgery on continuous positive airway pressure therapy in obstructive sleep apnea/hypopnea syndrome. Laryngoscope. 2009; 119(1):193-196.
  12. Gindros G, Kantas I, Balatsouras DG, et al. Comparison of ultrasound turbinate reduction, radiofrequency tissue ablation and submucosal cauterization in inferior turbinate hypertrophy. Eur Arch Otorhinolaryngol. 2010; 267(11):1727-1733.
  13. Harrill WC, Pillsbury HC, McGuirt WF, Stewart MG. Radiofrequency turbinate reduction: a NOSE evaluation. Laryngoscope. 2007; 117(11):1912-1919.
  14. Hytonen ML, Bäck LJ, Malmivaara AO, Roine RP. Radiofrequency thermal ablation for patients with nasal symptoms: a systematic review of effectiveness and complications. Eur Arch Otorhinolaryngol. 2009; 266(8):1257-1266.
  15. Kizilkaya Z, Ceylan K, Emir H, et al. Comparison of radiofrequency tissue volume reduction and submucosal resection with microdebrider in inferior turbinate hypertrophy. Otolaryngol Head Neck Surg. 2008; 138(2):176-181.
  16. Koutsourelakis I, Georgoulopoulos G, Perraki E, et al. Randomised trial of nasal surgery for fixed nasal obstruction in obstructive sleep apnoea. Eur Respir J. 2008; 31(1):110-117.
  17. Li HY, Lin Y, Chen NH, et al. Improvement in quality of life after nasal surgery alone for patients with obstructive sleep apnea and nasal obstruction. Arch Otolaryngol Head Neck Surg. 2008; 134(4):429-433.
  18. Li HY, Wang PC, Chen YP, et al. Critical appraisal and meta-analysis of nasal surgery for obstructive sleep apnea. Am J Rhinol Allergy. 2011:25(1):45-49.
  19. Lin H, Friedman M, Chang H, et al. The efficacy of multilevel surgery of the upper airway in adults with obstructive sleep apnea/hypopnea syndrome. Laryngoscope. 2008; 118(5):902-908.
  20. Masdon JL, Magnuson JS, Youngblood G. The effects of upper airway surgery for obstructive sleep apnea on nasal continuous positive airway pressure settings. Laryngoscope. 2004; 114(2):205-207.
  21. Nakata S, Noda A, Yagi H, et al. Nasal resistance for determinant factor of nasal surgery in CPAP failure patients with obstructive sleep apnea syndrome. Rhinology. 2005; 43(4):296-299.
  22. Neace JM, Krempl GA. Radiofrequency treatment of turbinate hypertrophy, a randomized, blinded, placebo-controlled clinical trial. Otolarygol Head Neck Surg. 2004; 130(3):291-299.
  23. Nelson LM, Barrera JE. High energy single session radiofrequency tongue treatment in obstructive sleep apnea surgery. Otolaryngol Head Neck Surg. 2007; 137(6):883-888.
  24. Olson EJ, Park JG, Morgenthaler TI. Obstructive sleep apnea-hypopnea syndrome. Prim Care. 2005; 32(2):329-359.
  25. Rimmer J, Fokkens W, Chong LY, Hopkins C. Surgical versus medical interventions for chronic rhinosinusitis with nasal polyps. Cochrane Database of Syst Rev. 2014;(12):CD006991.
  26. Singh A, Patel N, Kenyon G, Donaldson G. Is there objective evidence that septal surgery improves nasal airflow? J Laryngol Otol. 2006; 120(11):916-920.
  27. Steward DL. Effectiveness of multilevel (tongue and palate) radiofrequency tissue ablation for patients with obstructive sleep apnea syndrome. Laryngoscope. 2004; 114(12):2073-2084.
  28. Stewart MG, Smith TL, Weaver EM, et al. Outcomes after nasal septoplasty: results from the Nasal Obstruction Septoplasty Effectiveness (NOSE) study. Otolaryngol Head Neck Surg. 2004; 130(3):283-290.
  29. Stuck BA, Sauter A, Hormann K, et al. Radiofrequency surgery of the soft palate in the treatment of snoring. A placebo controlled trial. Sleep. 2005; 28(7):847-850.
  30. Weaver TE, Grunstein RR. Adherence to continuous positive airway pressure therapy: the challenge to effective treatment. Proc Am Thorac Soc. 2008; 5(2):173-178.
  31. Zonato AI, Bittencourt LR, Martinho FL, et al. Upper airway surgery: the effect on nasal continuous positive airway pressure titration on obstructive sleep apnea patients. Eur Arch Otorhinolaryngol. 2006; 263(5):481-486.

Government Agency, Medical Society, and Other Authoritative Publications:

  1. American Academy of Otolaryngology-Head and Neck Surgery. Clinical Consensus Statement. Septoplasty with or without inferior turbinate reduction. 2015; 153(5):708-720.
  2. Aurora RN, Casey KR, Kristo D, et al. American Academy of Sleep Medicine (AASM). Practice parameters for the surgical modifications of the upper airway for obstructive sleep apnea in adults. Sleep. 2010; 33(10):1408-1413. Available at:  http://www.aasmnet.org/Resources/PracticeParameters/PP_SurgicalModificationsOSA.pdf. Accessed on July 19, 2017.
  3. Epstein LJ, Kristo D, Strollo PJ, et al. American Academy of Sleep Medicine (AASM). Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J Clin Sleep Med. 2009; 5(3):263-276. Available at: http://www.aasmnet.org/Resources/ClinicalGuidelines/OSA_Adults.pdf. Accessed on July 19, 2017. 
  4. Kapur VK, Auckley DH, Chowdhuri S, et al. American Academy of Sleep Medicine (AASM). Clinical practice guideline for diagnostic testing for adult Obstructive Sleep Apnea: An AASM Clinical Practice Guideline. J Clin Sleep Med. 2017; 13(3):479-504.
  5. Main C, Liu Z, Welch K, et al. Surgical procedures and non-surgical devices for the management of non-apnoeic snoring: a systematic review of clinical effects and associated treatment costs. Health Technol Assess. 2009; 13(3):iii, xi-xiv, 1-208.
  6. U.S. Food and Drug Administration (FDA). Center for Devices and Radiological Health Circulatory System Devices Panel. Somnoplasty System (Somnus Medical Technologies, Sunnyvale, CA). Summary of Safety and Effectiveness. No. K971450. July 17, 1997. Available at: http://www.accessdata.fda.gov/cdrh_docs/pdf/K971450.pdf. Accessed on July 19, 2017.
  7. U.S. Food and Drug Administration (FDA). Center for Devices and Radiological Health Circulatory System Devices Panel. Gyrus G I1 Radio-frequency workstation & accessories (Gyrus Medical Inc., Bartlett, TN). Summary of Safety and Effectiveness. No. K021777. August 26, 2002. Available at: http://www.accessdata.fda.gov/cdrh_docs/pdf2/k021777.pdf. Accessed on July 19, 2017.
  8. U.S. Food and Drug Administration (FDA). Center for Devices and Radiological Health Circulatory System Devices Panel. Latera Absorbable Nasal Implant (Spirox, Inc. Menlo Park, CA). Summary of Safety and Effectiveness. No. K161191. June 23, 2016. Available at: https://www.accessdata.fda.gov/cdrh_docs/pdf16/k161191.pdf . Accessed on July 19, 2017.
Websites for Additional Information 
  1. American Academy of Otolaryngology- Head and Neck Surgery (AAO/HNS). Practice Management Topics. Available at: http://www.entnet.org/Practice/Nasal-Surgery-and-OSAS.cfm. Accessed on July 19, 2017.
  2. American Academy of Sleep Medicine (AASM). Available at: http://www.aasmnet.org/default.aspx. Accessed on July 19, 2017.
Index

Latera Absorbable Nasal Implant
Nasal Turbinate Hypertrophy
Obstructive Sleep Apnea, Nasal Surgery for
Radiofrequency Ablation of Nasal Turbinates
Somnoplasty (Volumetric Tissue Reduction of Nasal Turbinates)
Volumetric Tissue Reduction of Nasal Turbinates

The use of specific product names is illustrative only. It is not intended to be a recommendation of one product over another, and is not intended to represent a complete listing of all products available.

Document History
Status Date Action
Reviewed 08/03/2017 Medical Policy & Technology Assessment Committee (MPTAC) review. Updated Definitions, Coding and References sections.
Reviewed 08/04/2016 MPTAC review. The Rationale and References were updated. Removed ICD-9 codes from Coding section.
Reviewed 08/06/2015 MPTAC review. The Rationale and References were updated.
Reviewed 08/14/2014 MPTAC review. References were updated.
Reviewed 08/08/2013 MPTAC review. The Definitions and References were updated.
Reviewed 08/09/2012 MPTAC review. The Rationale and References were updated.
Revised 08/18/2011 MPTAC review. The additional position statement regarding radiofrequency ablation of nasal turbinates was removed. The title has been changed from: Nasal Surgery for the Treatment of Obstructive Sleep Apnea (OSA) (Including Radiofrequency Ablation of Nasal Turbinates for Nasal Obstruction with or without OSA) to the following: Nasal Surgery for the Treatment of Obstructive Sleep Apnea (OSA) and Snoring. The Description, Rationale, References and Coding sections were updated.
Reviewed 08/19/2010 MPTAC review. The Rationale and References were updated.
  01/01/2010 Updated Coding section with 01/01/2010 CPT changes.
Reviewed 08/27/2009 MPTAC review. References were updated.
Revised 08/28/2008 MPTAC review. The position statement regarding radiofrequency ablation (volumetric tissue reduction) of nasal turbinates was clarified to consider these procedures as investigational and not medically necessary for all indications. References and Coding sections were updated.
  02/21/2008 The phrase "investigational/not medically necessary" was clarified to read "investigational and not medically necessary." This change was approved at the November 29, 2007 MPTAC meeting.
Reviewed 08/23/2007 MPTAC review. References were updated.
Reviewed 09/14/2006 MPTAC review. References were updated.
Revised 09/22/2005 MPTAC review. Revision based on Pre-merger Anthem and Pre-merger WellPoint Harmonization.
Pre-Merger Organizations

Last Review Date

Document Number

Title

 

 
Anthem, Inc.

 

No prior document    
WellPoint Health Networks, Inc.

9/24/2004

3.03.27 Nasal Surgery for the treatment of Obstructive Sleep Apnea (OSA) (Including Radiofrequency Ablation of Nasal Turbinates for Nasal Obstruction with or without OSA)